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A physical model is proposed for droplet dispersal during evaporative freezing 
under vacuum, and results are given from an experimental test. The radius at 
which explosive dispersal becomes possible has been determined. 

Here we consider the behavior of droplets of water or aqueous solution under vacuum. 
When the droplets are injected into the vacuum chanber, the liquid evaporates rapidly, and 
if the pressure in the chamber is below the pressure corresponding to the triple point, the 
droplets freeze rapidly. As a rule, the freezing of such droplets is nearly always accom- 
panied by breakup [I, 2], which takes various forms: from cracking in the granules (Fig. la) 
to vigorous explosion (Fig. ib). It is very important to establish the relationships in this 
phenomenon in organizing many technological processes such as the continuous sublimation 
treatment of a liquid or paste materials [3], since the character of the dispersal will ul- 
timately determine the choice of working conditions to give a product for a particular pur- 
pose as well as methods of calculating the corresponding equipment. Here we consider the 
granule disruption mechanism in relation to the process parameters. 

Droplets may be disrupted on injection into a vacuum for two reasons; boiling under 
vacuum or increased pressure in the liquid core of a partially frozen drop because of the in- 
crease in volume of wateron crystallization. Here we consider the second mechanism in more 
detail, since fairly detailed studies have been made [4] on disruption by boiling. 

Of the few papers dealing with disruption produced by the increase in volume on crystal- 
ization, the fullest treatment is to be found in [i]. There the pressure increase in the 
liquid was deduced as a function of the position of the phase boundary, and the distributions 
of the radial and tangential stresses in the shell were determined for viscous and elastic 
models for ice. Here it was assumed that the shell in a partially frozen drop can withstand 
loads substantially exceeding the strength of ice without failure, As a result, it was found 
that the distribution of the tangential stresses differed radically from the known [5] Lam~ 
distribution. For example, according to [i] the tangential stresses in the layer adjoining 
the inner surface of the shell are compressive, but as the radius increases they change sign 
and attain their maximum value at the outer surface (curve i in Fig. 2). On the other hand 
according to Lame the tangential stresses are tensile ones throughout the shell and are max- 
imal at the inner surface (curve 2 of Fig. 2). 

We propose a different approach to the granulation problem. Firstly, we assume that the 
freezing is represented by a sequence of cycles of cracking and healing. Here the contri- 
bution from ~hestresses arising in the current layer of ice being formed to the stress dis- 
tribution in the shell is unimportant. In other words, a Lam~ distribution applies for the 
stresses in the shell [5]: 

" ~ r = P  ~ 1  l - -  
r a I] 3 ' 

x o ----* x~ = - -  P _ - x - z - _  + 1 1 - -  . 

(1) 

(2) 

Secondly, we assume that the behavior of the freezing drop is determined by the relation 
between the energy of the surface-tension forces and the potential energy of elastic deform- 
ation, which accumulates in the drop as a result of the successive cracking-healing cycles. 

Then on this basis the freezing will occur as follows. 
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Fig. i. Characteristic features in droplet failure: a) cracking; 

b) explosion. 

At the start, there is vigorous evaporation, and the surface layer freezes, i~e., an ice 
shell is formed. The partially frozen drop then consists of a liquid core and a solid shell, 
wi~h a sharp boundary (Fig. 2). The temperature at the outer surface is lower than the freez- 
ing temperature. As a result, the liquid crystallizes at the inner surface and the boundary 
migrates f~om the periphery towards the center. The specific volume of water increases on 
crystallization, so the liquid in the core is compressed to a certain pressure, and radial 
and tangential stresses arise in the shell. The pressure in the core and the stresses in the 
shell will be dependent on the position of the phase boundary, and therefore the same applies 
to the elastic energy. At a certain instant, the stresses reach the strength of ice, and the 
shell breaks. The further course of the process will be determined by the amount of accumu- 
lated elastic energy. 

If the potential energy is approximately equal to the energy needed to break the ice 
shell, or somewhat larger than this, then there will be no visible disruption. In that case, 
the liquid flows from the core into the resulting crack, and the pressure falls to zero, so 
the shell is completely unloaded. The displaced liquid may flow over the shell and form a 
new surface as a result of the excess elastic energy. At the same time, the liquid under 
vacuum evaporates very rapidly. As a result, the liquid freezes rapidly and the crack in the 
shell is healed, and a new surface takes the form of an overlying layer. This cycle may occur 
repeatedly during the freezing. After the healing, a new layer of ice is formed on the inner 
surface, which again leads to stresses in the solid. The stresses are compressive in this 
layer, but the thickness of the layer is small by comparison with that of the entire shell, 
so the contribution from the stresses here to the general stress distribution can be neglected, 
i.e., we can assume that a Lam~ distribution applies. 

The shell thickness and the liquid pressure will increase from cycle to cycle. Conse~ 
quently, the amount of accumulated eleatic energy will increase~ At a certain stage in the 
freezing of a drop of a given size, this energy will exceed the shell disruption value. In 
that case, the excess potentialenergy will be increasing the surface of the liquid core, and 
following the formation of the next crack the healing is displaced by the spherical shell 
cracking off. The surface of the liquid is then in contact with vacuum and the liquid freezes 
rapidly, and the configuration of the granule is then fixed (Fig. la). With a given position 
for the phase boundary, this cracking may occur to an extent dependent on the radius of the 
droplet, which determines the potential energy. In the limiting case of complete disruption, 
all the liquid from the core is distributed as a thin layer over the inner surface of the 
shell. The resulting increase in surface area is maximal, and the amount of energy required 
for this is given by 

W~ ~ 4~ 2. (3) 
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Fig. 2. Stress distribution 
in a shell in a partially fro- 
zen droplet: a) from [1]; 2) 
Lam~ distribution. 

Thus the potential energy of the drop is proportional to the volume, i.e., to the cube of 
the radius, while the energy of the surface forces is proportional to the square, so there is 
a critical radius beyond which the elastic energy will exceed the value defined by (3). In 
that case, one expects the explosive disruption, in which the excess elastic energy is trans- 
formed to kinetic energy of the fragments. 

We now determine the potential energy of a partially frozen water droplet. We assume 
that there are only elastic strains in the ice. 

It should be noted that ice is elastic only under brief loading, while under prolonged 
loading it acts as a viscous liquid [6]. Estimates of the viscous-stress relaxation times 
and the temperature pattern show that those times for an evaporative freezing under vacuum 
are larger by more than two orders of magnitude than the characteristic freezing time. There- 
fore, one is justified in using the elastic approximation. 

We begin our consideration with the time at which several cracking-healing cycles have 
occurred and the phase boundary occupies a position with radial coordinate n, with the liquid 
in the core compressed to a certain pressure and with radial and tangential stresses in the 
shell. The elastic energy accumulated up to this time is made up of the energy of the liquid 
and solid phases: 

Wp = W~ + W i . (4) 

Each of these terms can be derived in terms of the specific elastic-strain energy and 
the phase volume: 

W= ~ udV. 
v (5 )  

We first consider the energy acquired by the ice shell. In accordance with our hypothesis, 
the shell has radial compressive stresses and tangential tensile ones. The elastic energy 
of unit volume of the ice governed only by the stress components is then found as 

u i = 2~(T~ q-2(1 + ~) w~-- 4~r~,), (6) 
4 

where T r and To a re  de f ined  by (1) and (2) c o r r e s p o n d i n g l y '  

The largest tensile stress is attained at the inner surface of the sphere: 

Rs 
~ m ~ , = _  p ( 1  +_.~..s)/(l__R~l~,). (7) 

We equate  t h i s  to the  t e n s i l e  s t r e n g t h  of  i ce  ( e q u i l i b r i u m  c o n d i t i o n  fo r  the  hemisphere)  to 
ge t  a r e l a t i o n s h i p  between the  maximum p r e s s u r e  in  the  l i q u i d  core  and the p o s i t i o n  of  the  
phase boundary:  

P= 01 n3 -i + I (8) 

We then substitute (i), (2), and (8) into (6) to get an expression for the maximum strain 
energy of unit volume of the shell that can be accumulated up to this instant: 

3 ~ R s "R s 2 r" 

198 



W 

z 

6 

z4 

3 

3 

/0-8 

8 

8 

L 

i 

!/ /jl -" ' 

F/(,,i j 
7 / / ' 17x  I / ' , i A  x 

# @ o,s o,8 o,7 #~]/R./# 

Fig. 3. Comparison of calcula- 
tions on potential energy with 
experiment (W in J and R in m); 
!) potential energy of partially 
frozen droplet (calculation); 2) 
energy of surface forces in com- 
plete cracking (calculation); 3) 
cracking; 4) explosion; a) R = 
0.7.10 -3 , b)0.6.10-3; c) 0.5.10-31 
d) 0.4o10-3; e) 0.3-10-3; f) 0.2. 
i0 -3 , 

In accordance with (5), the potential energy of the entire shell is 

Wi = 2aR3PZ 01)' 

1 -I- t~ R 3 
(I - -  2~) 

II 3 2 ~13 ( I 0 )  

R3 E ~l 8 . . . .  1 

We now determine the potential energy accumulated in the liquid core. 

The liquid is under hydrostatic compression, so the specific elastic-strain energy will 
be determined only by the pressure: 

I 
U l : ~P~. 

2 K  ( 1 1 )  

Then the following is the elastic energy of the entire volume of liquid at this stage in the 
freezing. 

V./. l --_ 2 z R  3 ( 1 2 )  
3 T 

Finally, we have for the entire drop in accordance with (6) that 

?(1 2 ) 
iT/\~ + E _(~7-I) R3 (13) 

Figure 3 shows results obtained from (13), along with curves characterizing the energy 
of the surface forces during freezing for the case of complete disruption. 

The results indicate some features of the behavior during freezing. The graphs show 
that the energy of a relatively small drop remains less than the energy needed for complete 
shattering at all stages. Such a drop does not shatter, and the cracks that form heal up or 
else there is partial shell shedding. As the radius increases, the difference between the 
potential energy of the drop and the complete shattering energy decreases. If the radius is 
larger than a certain Value, the potential energy exceeds the total shattering energy. The 
freezing of such a drop should end in explosive shattering, with the elastic energy converted 
to kinetic energy of the fragments. We find that the cricial radius is Rcr = 0.256.10 -3 m. 
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Fig. 4. Apparatus for examining droplet freezing 
under vacuum: i) vacuum chamber; 2) droplet; 3) 
illumination system; 4) vacuum valve; 5) controlled 
leak; 6) electromagnetic vacuum valve; 7) balast 
chamber; 8) motion-picture camera; 9, i0) dibutyl 
phthalate vacuum gauges; II) thermocouple vacuum 
gauge; 12) manometer tube; 13, 14) vacuum pumps. 

An interesting point is that there is a position for the phase boundary (R/n = 1.72) 
such that the potential energy of the drop is maximal. This maximum occurs because in the 
initial period (R/ < 1.72), the pressure increase in the liquid predominates, while the re- 
duction in the liquid core volume has a more marked effect at the later stages. 

Two series of experiments were performed to check this model. The first series was per- 
formed with a pilot continuous-operating sublimation system with direct injection into vacuum 
[3]. In the experiments, a 3% solution of sodium sulfite entered the vacuum chamber as a 
flow of polydispersed droplets. The droplets froze during flight and struck a heated target, 
where the ice sublimed. This gave granules of dry salt. 

The use of a weak salt solution with subsequent sublimation drying enabled one to iden- 
tify the structure of the granules formed by failure. As the concentration was low, the dis- 
solved salt was taken as having little effect on the granulation mechanism. The method en- 
ables us to avoid the difficulties associated with examining the structure of the frozen 
drops and to make the necessary measurements on the dry salt granules. For each granule we 
determined the thickdess of the shell formed at the instant of disruption and the outside 
diameter. Knowing ~, from (5) we found the corresponding value of the surface energy and 
compared this with the elastic strain energy calculated from (13). 

The second series of experiments was performed to determine the potential energy on ex- 
plosion. High-speed cinematography was used with the apparatus shown in Fig. 4. A drop of 
liquid 2 was placed by means of a pipette on a substrate with hydrophobic coating, which was 
placed in the chamber i, where the pressure of 2500-4000 Pa was set up. The ballast chamber 
7 was evacuated to a pressure at which the freezing was to be examined (this was 26.6 Pa in 
our experiments), after which the two chambers were connected together by the electromagnetic 
valve 6. The illumination system 3 and cine camera 8 were switched on synchronously. The 
experiments were performed with 3% Na2SO3 solution and pure water. The frame speed was 38 
a second with an exposure time of 1/116 sec. The diameter range was 0.68"i0 -s -i.194.10-~ 
m. In all, 200 experiments were performed. Figure ib shows a characteristic pattern in the 
explosion of a drop of distilled and outgassed water of diameter 1.1.10 -3m. The frames en- 
able one to determine the overall kinetic energy of the fragments from the tracks, the sizes, 
and the exposure times; in accordance with the model, this energy should be equal to the 
elastic energy accumulated in the drop. 

Figure 3 compares the results with the cal=ulations. On the whole, the experiment con- 
firms the model. 

The experiments showed that the freezing of relatively small drops with R < 0.2-10 -s 
occurs without visible disruption. However, microscopic examination of the dehydrated gran- 
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ules showed runs on the surface, which corresponds to repeated cracking and healing. With 
larger drops, there was nearly always visible bursting. Also, the tendency for the process 
to pass from cracking to explosion was evident. The experiments gauge the ranges in radius 
in which the different forms occurred. For droplets of radius 0.2.10 -3 E R E 0.28.10 -3 m, 
cracking on freezing was characteristic, whereas for ones of size R > 0.4.10 -3 m explosion 
was characteristic. In the range 0.28.10 -3~I~ 0.4~ m, the two forms were equally prob- 
able. Therefore, the transition from cracking to explosion in fact occursnot at a single 
value of the radius, as the calculations imply, but over a certain range, which is quite ex- 
plicable on the model. In fact, the increment in the ice layer in each cracking-healing 
cycle varies. Therefore, after the last healing cycle the thickness Of the ice preceding 
visible bursting will vary. Therefore, the potential energy in a drop of a given size will 
also vary. The two forms of failure will occur together in the range of radii for which the 
deformation energy is comparable with the bursting energy. The lower end of this range, i.eo, 
the least radius leading to explosion, is the critical radius, and experiment gives this as 
Rcr = 0.28.10 -3 m. 

The potential energy was determined from the shell thickness (in cracking) and from the 
fragment tracks (on explosion), and the values were in satisfactory agreement with the cal- 
culations. However, the measured potential energy and critical radius somewhat exceed the 
values given by the calculations, for the following reasons. Firstly, the strength of ice 
has been chosen inexactly, as this is dependent on the freezing conditions. Secondly, one 
assumes that one cannot completely ignore the viscous behavior of ice even under vacuum at 
high freezing rates. Therefore, the model can be refined by performing additional experi- 
ments on the behavior at different freezing rates. 

NOTATION 

P, pressure; R, drop radius; D, drop diameter; ~, surface tension; ~r, radial stress; 
T~, ~8, tangential stresses; r, ~, ~, spherical coordinates; n, phase transition boundary 
coordinate; W s, work of surface tension forces; Wp, elastic deformation energy; WZ, potential 
energy of liquid; Wi, potential energy of solid; V, volume; u, elastic deformation energy of 
unit volume; E, Young's modulus; ~, Poisson's ratio; K, bulk modulus. 
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